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Abstract. Applying Gibb’s geometrical methods to the thermodynamics of H-plasmas we explore the land-
scape of the free energy as a function of the degrees of ionization and dissociation. Several approximations
for the free energy are discussed. We show that in the region of partial ionization/dissociation the quantum
Debye-Hückel approximation (QDHA) yields a rather good but still simple representation which allows to
include magnetic field and fluctuation effects. By using relations of Onsager-Landau-type the probability
of fluctuations and ionization/dissociation processes are described. We show that the degrees of ioniza-
tion/dissociation are probabilistic quantities which are subject to a relatively large dispersion. Magnetic
field effects are studied.

PACS. 52.25.Kn Thermodynamics of plasmas – 52.27.Gr Strongly-coupled plasmas –
05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

In plasmas and in particular in hydrogen systems, ioniza-
tion and dissociation processes play an important role. We
find the equilibrium values of the degrees of ionization and
dissociation by minimization of the free energy at fixed
total mass [1–3]. Further the ionization and dissociation
rates are derived from kinetic equations [2,4]. Here we
will start with a study of the geometry of the free energy
landscape [5,6]. The idea to apply geometrical methods in
thermodynamical research goes back to pioneering papers
of Gibbs [7]. We apply Gibb’s method here to plasmas. We
will study different approximations to the thermodynamic
functions and the influence of several effects, our approach
is limited to the region T > 10 000 K. In a preceding work
we have developed a similar approach for ionization pro-
cesses described by the Saha equation [6]. We include here
also effects of magnetic fields which are of increasing in-
terest not only for astrophysical applications but also for
plasmas confined in magnetic traps. A preliminary work
on magnetic field effects was published earlier [8]. The
magnetic field introduces an anisotropy into the system.
This changes the ideal gas contribution, the bound state
energies and the contributions due to interactions of the
free particles. Here we will take into account the ideal gas
corrections in an exact way, and the bound state and in-
teraction corrections in approximations which include the
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quadratic orders in the field O(B2). Practically this re-
stricts our approach to fields B < 105 T.

We start with exploring the geometry of the free energy
landscape as a function of the degrees of ionization and
dissociation. On this basis we are able to describe not
only the chemical equilibria but also fluctuations around
the equilibrium values [5].

2 The free energy density of hydrogen

2.1 Defining the basic variables of the system

We consider in the following hydrogen plasmas at fixed
temperature T , and proton density n. Our aim is to study
ionization processes

H ⇔ p + e− (1)

and dissociation processes

H2 ⇔ H + H. (2)

For simplicity, the formation of H+
2 and H− species will

be neglected.
In order to define the thermodynamics of the system

we introduce the free energy

F (T, V, {N}) , (3)
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the density of the free energy

f (T, n) =
F

V
= f (T, ne, ni, na, nm) , (4)

the degrees of ionization and dissociation [3]. We will use
here the following definitions:

α =
ni

ni + na + 2nm
β =

na

na + 2nm

βa =
na

ni + na + 2nm
βm =

2nm

ni + na + 2nm
· (5)

We note that βa is the relative amount of protons bound
in atoms and βm the relative amount bound in molecules.
Due to the balance relation for the total proton density

n = ni + na + 2nm (6)

we find the relations

βa = (1 − α)β, βm = (1 − α)(1 − β). (7)

The condition of neutrality requires that electron and ion
densities are always equal:

ne = ni. (8)

Therefore the free energy density depends only on 4 inde-
pendent parameters

f ⇒ f (T, n, α, β) . (9)

If we include magnetic field effects we have 5 independent
parameters

f ⇒ f (T, n, B, α, β) . (10)

The equilibrium composition is found by the minimization
procedure

δf

δα
= 0,

δf

δβ
= 0. (11)

Instead of β we may use βa or βm as variational parame-
ters. The relation

α + βa + βm = 1 (12)

gives the possibility for visualization of the free energy
surface on a simplex.

2.2 The different contributions to the free energy

We assume the following structure [2,3]:

f = f id
e + f id

i + f id
a + f id

m + fee + fii + fie + fhs. (13)

The first 4 terms describe the ideal contributions of the
electrons, ions, atoms and molecules. The next 3 terms

represent the Coulomb interactions electron-electron, ion-
ion, and ion-electron. For these terms different ap-
proximations exists as e.g. the quantum Debye-Hückel-
approximation (QDHA) and Padé approximation [1].
Basically we will use here the QDHA:

fee + fii + fie ≈ fDH. (14)

In the QDHA screening and quantum effects are both
taken into account in a first approximation. The inclusion
of further effects as Hartree-Fock etc. by means of Pad ap-
proximations makes no principal difficulties but increases
the numerical efforts. We will show that in the region of
partial ionization and dissociation the QDHA yields a rea-
sonable description of ionization/dissociation phenomena.
The interactions of the neutral components are taken into
account by hard core approximation including effects of
reduced volume [2,3].

We will discuss now these contributions in more detail:

– the ideal free energy of electrons f id
e . We use Fermi-

Dirac statistics including excluded volume corrections
representing the free energy in the following way [2]:

fe = nekBTz

(
1
2

neΛ
3
e

1 − η0

)
· (15)

The function z(x) which is due to Zimmermann [9] in-
terpolates between the low density limit: z(x) ≈ ln x−1
and the high density limit: z (x) ∝ x

2
3 . Further Λe =

h/
√

2πmekBT is the thermal wave length of the elec-
trons, correspondingly we will use next the thermal
wave lengths of ions, atoms and molecules (Λi, Λa,
Λm). The excluded volume factor η0 < 1 expresses
that some part of the total volume V which is occu-
pied by atoms and molecules is not accessible to the
electrons. The accessible volume (1 − η0)V is smaller
than the total volume and the effective densities are
higher. A strict theory for η0 is not yet available. We
will use here

η0 =
4
3
πR3

0(na + 2nm) (16)

as the definition for the packing parameter with an
estimate for the atomic radius R0 = 0.78 Å. Effects of
a magnetic field are included by the replacement [8]

neΛ
3
e → neΛ

3
e

tanh(xe)
xe

, (17)

where xe = �ωe
c/2kBT and ωe

c = eB/me;
– the ideal free energy of the ions f id

i which is given by
the classical term

f id
i = nikBT

[
ln

(
niΛ

3
i

) − 1
]− nikBT ln(1− η0). (18)

The second term describes the excluded volume effect
for the classical bare protons [2]. The parameter xi =
�ωi

c/2kBT (ωi
c = eB/mi) is very small xi � 1 for

small B. Therefore the magnetic field effects can be
neglected for protons;
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– the ideal atom contribution: f id
a . We assume

Boltzmann statistics i.e.

f id
a = nakBT

[
ln

(
naΛ3

a

σa

)
− 1

]
(19)

including the internal states by a Brillouin-Planck-
Larkin partition function [2]

σa(ξ) =
∞∑

n=1

n2

{
e(

ξ
2 )

2 1
n2 − 1 −

(
ξ

2

)2 1
n2

}
, (20)

where ξ = 2
√

Ry/kBT with the ionization energy of
hydrogen Ry � 13.598 eV. Including the magnetic field
we have to replace the atomic partition function σa by
an effective partition function,

σa(T ) → σeff(T, B), (21)

which reads [8]

σeff(T, B) = σa(ξe) +
x2

e

24

[
σB(ξe) +

ξ4
e

192

(
1 +

π2

3

)]
(22)

with the interaction parameter ξe = e2/4πε0kBTλe

(λe = �/
√

2mekBT is the thermal wave length for the
relative motion of electrons and protons (with an infi-
nite proton mass)) and [8]

σB(ξ) =
∞∑

n=1

2n2(1 + n2)

[
e(

ξ
2 )

2 1
n2 − 1 −

(
ξ

2

)2 1
n2

− 1
2!

(
ξ

2

)4 1
n4

]
−

∞∑
n=1

n4(5 + 7n2)
(

2
ξ

)2

×
[
e(

ξ
2 )

2 1
n2 − 1 −

(
ξ

2

)2 1
n2

− 1
2!

(
ξ

2

)4 1
n4

+
1
3!

(
ξ

2

)6 1
n6

]
; (23)

– the molecular contribution: f id
m . We will use the repre-

sentation [3]

f id
m = nmkBT

[
ln

(
nmΛ3

m

σm

)
− 1

]
+ fvib

m + f rot
m (24)

including the internal molecular and atomic states,

σm = σ2
a exp

(
4.746 eV

kBT

)
, (25)

and the contributions of vibrational and rotational
states [10]

fvib
m = nmkBT

[
ln

(
1 − e−

Tv
T

)
+

Tν

2T

]
, (26)

Tv = 6 210 K

f rot
m = nmkBT

[
ln

Tr

T
− Tr

3T
− 1

90

(
Tr

T

)2
]

, (27)

Tr = 85 K;

– the Debye-Hückel contribution fDH. Using here the so-
called Λ

8 -approximation [2] we arrive at the formula

fDH = −kBT
κ3

12π
τ (κ a(T )) . (28)

Here the inverse Debye-radius is defined by

κ =

√
2nie2

ε0kBT
(29)

and the effective thermal electron radius by

a(T ) =
Λe

8
(30)

where Λe is the electron thermal wave length defined
above. Further the τ -function has the standard Debye-
Hückel form [1]:

τ(x) =
3
x3

[
ln (1 + x) − x +

x2

2

]
· (31)

The advantage of the QDHA is that magnetic field
effects may easily taken into account by a factor [8]

a(T ) → a(T, xe) = a(T )
[
1 − 1

48
x2

e

]
· (32)

The magnetic field reduces the effective diameter. This
reflects the fact that the magnetic field localizes the
particles perpendicular to the field;

– the hard-core contribution fhs. For this term we use
the Carnahan-Starling approximation [2]:

fhs = kBT
(na + 2nm)

(
4η − 3η2

)
(1 − η)2

· (33)

The volume fraction of the neutrals is here defined by
the effective packing parameter

η =
4π

3
R3 (na + 2nm) . (34)

Following the work of Juranek and Redmer [11] we fix
the effective packing radius of atoms at a mean value
R = 0.37 Å. This is of course a rough approximation
which might be refined by taking into account different
radii for the atoms and for the molecules and by in-
troducing temperature-dependent radii based on fluid
variational theory [11].

3 Discussion of the approximations
and influence of parameters

For this section we neglect the magnetic field, i.e. we as-
sume B = 0. We are interested in partial ionization and
dissociation, i.e. in the region of the density-temperature
plane where electrons, ions, atoms, and molecules exist.
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Fig. 1. Degree of ionization and dissociation for different
radii R0 at a temperature of T = 2×104 K. From right to left:
R0 = 0, R0 = 0.73 Å, R0 = 0.78 Å, and R0 = 0.83 Å.

In this region the electrons may show quantum effects but
the ions, atoms, and molecules are still classical.

The excluded volume effect, i.e. the effect that the elec-
trons and ions cannot penetrate into the neutral particles,
are taken into account in the ideal contributions. The ex-
cluded volume factor η0 is defined above with a fixed ra-
dius R0. If this effect is not considered we find a lower
ionization rate α at higher densities, shown in Figure 1.

A small difference of the radius R0 has an influence
on the degree of ionization and dissociation, see Figure 1.
For larger radii, α begins to increase at smaller densities
since the effective volume Veff = (1− η0)V , which is avail-
able for the electrons, decreases with increasing η0 and
thus increases the effective electron density neff

e = Ne/Veff .
Therefore the system tends to higher degrees of ionization.
The transition between low and complete ionization takes
place in a very narrow density range. For high densities
the excluded volume effect has to be considered and has
still to be refined maybe by taking into account temper-
ature dependencies of the radius [11] and by introducing
occupation probabilities [12–14].

The nonideal effects of the free charged particles can be
described more correctly by means of Pad approximation
(see e.g. [15–17]). Figure 2 shows the ionization and disso-
ciation rate as a function of the proton density calculated
by using the QDHA and by the Pad formulae given in [16].
For the density range of 1022−1025 cm3 and the tempera-
ture range 1×104−5×104 K we find only small deviations
of the QDHA from the Pad approach. For higher tempera-
tures above 105 K the deviations are much larger and the
QDHA is less accurate. In the following we will restrict
our study to temperatures much below 105 K, therefore
it is justified to use further the QDHA to simplify the
formulae and to reduce calculation efforts.
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Fig. 2. Degree of ionization as a function of the total proton
density for different temperatures: (1) T = 104 K, (2) T =
2×104 K, (3) T = 3×104 K, (4) T = 5×104 K, (5) T = 105 K.
The solid line represents the Calculation with the QDHA and
the dashed line with Pad approximation.
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Fig. 3. Free energy density at T = 300 K, n = 2 × 1019 cm−3

represented on the simplex α, βa, βm. The minimum of the
free energy is at the corner α = 0, βa = 0, βm = 1, i.e. in
equilibrium we find practically only molecules.

4 The geometry of the free energy landscape

On the basis of the formulae given in Section 2 we rep-
resented the geometry with respect to f (α, β) at fixed
T , n and starting with B = 0 (Figs. 3 and 4). We used
the variables α, βa, and βm which allow a representation
on a simplex according to equation (12). The minimum
of the free energy corresponds to the stationary degrees
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Fig. 4. Free energy density at T = 4× 104 K, n = 1022 cm−3.
The minimum is found in a region where electrons, ions, atoms
and molecules are present.

of ionization and dissociation. The form of the landscape
around the minimum determines the thermal fluctuations.

Depending on the values of temperature and proton
density we find different locations of the minimum. At
T = 300 K, n = 2 × 1019 cm−3 we observe a minimum
in the corner α = 0, βa = 0, βm = 1, meaning that only
molecules exist (Fig. 3). At different temperature and pro-
ton density, e.g. T = 4×104 K, n = 1022 cm−3 we observe
a minimum in the center of the simplex. This corresponds
to a situation where free electrons and ions and bound
states (atoms and molecules) exist under the same condi-
tions (Fig. 4).

With the procedure described above we calculated the
stationary degrees of ionization and dissociation for a lat-
tice of points in the temperature-density-plane. In this
way we obtained the degree of ionization as a function of
density and temperature (Fig. 5).

We observe full ionization (α = 1 on a plateau in the
upper right corner and at the left edge of the diagram)
at very high densities and in the region of lower densities
but high temperatures. At sufficiently low density we find
only bound states when the temperature is low (α = 0 in
a region beginning at the lower edge of the diagram). In
the intermediate region of proton densities we find a val-
ley of bound states stretching over the whole temperature
range with small ionization taking place only at very high
temperatures [1].

Now we will look at the formation of molecules (Fig. 6).
We observe similar features as above in the corresponding
parameter regions. At very high densities (left edge) no
molecules exist as well as in the region of lower densities
and high temperatures (upper right corner). When the
density is sufficiently low and the temperature is low as
well we find that the bound states observed in Figure 5
are practically only made up of molecules (βm ≈ 1 at the
lower edge). In the intermediate density region we find

Fig. 5. The degree of ionization α together with the dispersion
of α as a function of the proton density and the temperature.
The coding is such that light regions correspond to small dis-
persion and dark regions correspond to large dispersion.
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Fig. 6. The fraction of protons bound in molecules βm =
(1 − α) (1 − β).

a mountain of molecules (βm = 1) and a decline of the
degree of dissociation with rising temperature.

5 Fluctuations according to Boltzmann-Gibbs

Let us first consider the general schema of the theory
of isothermal fluctuations at given temperature T [18,
19]. We follow Klimontovich who developed the general
fluctuation theory of Boltzmann and Gibbs [19]. In the
general case we study a set of intrinsic parameters
A(X, a) = (A1(X, a), ..., An(X, a)) depending on dynam-
ical variables X and external parameters a and define a
conditional free energy F (a, T |A) which is the free en-
ergy at fixed values A = A(X, a). The intrinsic parameters
A(x, a) do not need to have any thermodynamic functions
which correspond to them. The equilibrium value of the
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Fig. 7. The probability distribution in the α, β-plane at T =
3 × 104 K and n = 1022 cm3.

free energy is F (a, T ). Then according to the Boltzmann-
Gibbs principle the probabilities of fluctuations of A are
given by

p(A|a, T ) = exp
[
F (a, T ) − F (a, T |A)

kBT

]
· (35)

In our case the dynamical variables are A = {α, β}, for F
we choose the free energy per proton φ = f/n with the
equilibrium value φ0 = f0/n at fixed temperature T .

Then according to the Boltzmann-Gibbs principle the
probability distribution of isothermal fluctuations reads

p (α, β|n, T ) =
e

φ0−φ(α,β)
kBT∑

α,β e
φ0−φ(α,β)

kB T

· (36)

An illustration of the probability distribution calculated
for a lattice of 50 × 50 points on the α, β−plane is shown
in Figure 7.

Further we show in Figure 5 the degree of ionization
together with the dispersion of the degree of ionization
coded in gray levels. The diagram was obtained with the
following procedure: for a given temperature and proton
density the stationary degrees of ionization and dissocia-
tion (α, β) were calculated. Then we additionally fixed the
degree of dissociation at its stationary value β = β and
calculated the probability p(α) to find arbitrary values for
the degree of ionization. The dispersion of the degree of
ionization (δα)2 = (α − ᾱ)2 was then calculated as the
root of the mean quadratic deviation from the stationary
value α.

We observe low dispersion (light) at very high densi-
ties due to the hard-sphere contribution. High dispersion
(dark) is observed in two transition regions, one when ion-
ization processes start taking place at intermediate den-
sities and temperatures (just above α = 0), the other at
the transition to complete ionization (just below α = 1)
where the remaining bound states break up.
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Fig. 8. Degree of ionization as a function of the proton density
n with the dispersion of the fluctuations of α at T = 4×104 K.

Inside the simplex we assume that the probability dis-
tribution function p(α, β = β̄) is an one dimensional Gaus-
sian distribution for values α inside the borders and for
small fluctuations δα = α − ᾱ

p(α) = C exp
[
− 1

2kBT

(
∂2φ

∂α2

)
α=ᾱ

(α − ᾱ)2
]

(37)

where ᾱ is the equilibrium value and therefore the most
probable value. The constant C is determined from
the normalization. The dispersion in the fluctuations is
given by

(δα)2 = kBT

[(
∂2φ

∂α2

)
α=ᾱ

]−1

. (38)

We see that the second deviation of φ(α, β = β̄), which
is the curvation of the free energy landscape determines
the dispersion (δα)2. Near to the corner of the simplex the
distribution is highly non-Gaussian and highly unsymmet-
rical. In this case the border of frequent fluctuations (the
range of the dispersion) may be estimated by finding the
roots of p(α) � p(α = ᾱ)/

√
e. For Gaussian distributions

this criterion agrees with the one given above.
In density-temperature regions where the minimum of

the free energy is developed very well e.g. if the minimum
is located in a corner of the simplex (see e.g. Fig. 3) we
have small dispersions. Is the free energy landscape flat
e.g. if the minimum is located inside the simplex (see e.g.
Fig. 4) we have large dispersions.

To further illustrate this, we show the dispersion of the
degree of ionization at fixed temperature, corresponding
to a cut through the diagram in Figure 5 parallel to the
n-axis. The dispersion is indicated by error bars, which are
cut at the physically impossible values α > 1 and α < 0
(Fig. 8). Again the dispersion is small at high and low
densities and is high near the transition α = 1 ⇒ α < 1
where bound states emerge.
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Fig. 9. Degree of ionization and dissociation for different
magnetic field strengths at a proton density n = 1023 cm−3.

1018 1019 1020 1021 1022 1023 1024 1025 1026
0

0.2

0.4

0.6

0.8

1
10�5 10�4 10�3 10�2 10�1 100 101 102

n [cm−3]

� [g cm−3]

α
,
β

a
,
β

m

B = 0T

B = 3 · 104T

B = 6 · 104T

��
α

�
βa

��
βm

Fig. 10. Degree of ionization and dissociation for different
magnetic fields at a temperature T = 3 × 104 K.

6 Magnetic field effects

We want to discuss now the influence of a constant uniform
magnetic field on the ionization and dissociation equilib-
rium. We have to carry out the replacements (17), (21),
and (32). These formulae equations are valid for weak
magnetic fields, i.e.

x2
e

48
� 1. (39)

In Figure 9 the degree of ionization and dissociation for
various magnetic field strengths are plotted over the tem-
perature. We find at a fixed density that the degree of
ionization of a plasma in a magnetic field is higher com-
pared to the field free case and increases with the field
strength. For temperatures higher than 105 K and weak
magnetic fields there are no differences in the ionization
degree. Further we see in Figure 10 that the curves devi-
ate in the mid-density range where atoms and molecules

exist up to the density where the transition to complete
ionization takes place.

7 Conclusions

Based on a detailed study of the free energy landscape we
developed a new description of ionization and dissociation
phenomena. The relatively simple approximation QDHA
used for the interaction term in the free energy allows the
study of the dispersion of the degrees of ionization and dis-
sociation and of magnetic field effects. The QDHA may be
replaced by more refined approximations as Pad approxi-
mation. We have shown that the study of free energy land-
scapes in combination with the fluctuation theory yields
relevant information on dispersion of the degrees of ioniza-
tion and dissociation. The natural dispersion is usually in
the range of 5−10% except on the borders. This has con-
sequences for many experimental quantities as e.g. con-
ductivity and optical properties. Since the conductivity is
in first approximation proportional to α, i.e. σ ∼ α σ0, we
may conclude that the thermal dispersion of the plasma
conductivity σ has nearly the same shape as the dispersion
of α. We note that the thermal fluctuations of α, β, σ etc.
are in general not of Gaussian character what is due to the
existence of borders as e.g. 0 ≤ α ≤ 1. Studying the influ-
ence of magnetic fields we have shown that a remarkable
influence on the degree of ionization starts at B ∼ 104 T,
the effects increases with the magnetic field strength. At
fields B � 5× 104 T the degree of ionization and also the
conductivity and other related quantities are substantially
higher than for the field free case, the present approach
however is no more valid at these extremely high fields.

Recent experimental work on dense hydrogen concen-
trates mainly on Hugoniots [20]. The approach presented
here is restricted to temperatures T > 10 000 K, there-
fore it cannot be used for the calculation of the low-
temperature parts of Hugoniots. An extension taking into
account recent results on the low temperature EOS of
dense hydrogen [3] is in progress.

The authors thank Stefan Hilbert, Hauke Juranek,
Ronald Redmer, Gerd Rpke, Manfred Schlanges and
Werner Stolzmann for many helpful discussions. The authors
W. Ebeling and H. Hache profited very much from a stay at
the Rostock University.
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